Equivariant Energy-Guided SDE for Inverse Molecular Design

Fan Bao*, Min Zhao*, Zhongkai Hao, Peiyao Li, Chongxuan Li[†]and Jun Zhu[†]

Inverse Molecular Design

Bao & Zhao et al., ICLR 2023

• Generated molecules should satisfy certain desirable properties, which involves learning a distribution of molecules conditioned on certain properties from data

Background

Bao & Zhao et al., ICLR 2023

• Let a tuple z = (x, h) represent a molecule, where $x = (x^1, \dots, x^M) \in RMn$ is the collection of coordinates of the M atoms and $h = (h^1, \dots, h^M) \in R^{Md}$ is the corresponding atom feature.

Rz = (Rx, h)

p(z|c) = p(Rz|c)

• The model distribution p(z|c) should be invariant to translational and rotational transformations to leverage the geometric symmetry in 3D molecular conformation

Equivariant SDE

Bao & Zhao et al., ICLR 2023

• Zero center of mass (CoM) subspace for translational invariance: $X = \left\{ x: \frac{1}{M} \sum_{i=1}^{M} x^i = 0 \right\}$

• forward SDE in the product space $X \times R^{Md}$

$$d\boldsymbol{z} = f(t)\boldsymbol{z}dt + g(t)d(\boldsymbol{w}_x, \boldsymbol{w}_h), \quad \boldsymbol{z}_0 \sim q(\boldsymbol{z}_0),$$

$$\downarrow$$
independent standard Wiener processes in X and R^{Md}

Geodiff: A geometric diffusion model for molecular conformation generation. ICLR 2022. Hoogeboom et al.. Equivariant diffusion for molecule generation in 3d.. ICML, 2022.

Equivariant SDE

Bao & Zhao et al., ICLR 2023

reverse SDE in the product space

$$d\boldsymbol{z} = [f(t)\boldsymbol{z} - g(t)^{2} \underbrace{(\nabla_{\boldsymbol{x}} \log q_{t}(\boldsymbol{z}) - \nabla_{\boldsymbol{x}} \log q_{t}(\boldsymbol{z}), \nabla_{\boldsymbol{h}} \log q_{t}(\boldsymbol{z}))}_{\text{score function form}}]dt + g(t)d(\tilde{\boldsymbol{w}}_{x}, \tilde{\boldsymbol{w}}_{h}),$$
$$d\boldsymbol{z} = [f(t)\boldsymbol{z} + \frac{\overline{g(t)^{2}}}{\sqrt{\beta_{t|0}}} \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\boldsymbol{z}, t)]dt + g(t)d(\tilde{\boldsymbol{w}}_{x}, \tilde{\boldsymbol{w}}_{h}), \quad \boldsymbol{z}_{T} \sim p_{T}(\boldsymbol{z}_{T})$$

in the product space, subtract the CoM for translational invariance

Rotation invariance

Theorem 1. Let $(\boldsymbol{\epsilon}_{\boldsymbol{\theta}}^{x}(\boldsymbol{z}_{t},t), \boldsymbol{\epsilon}_{\boldsymbol{\theta}}^{h}(\boldsymbol{z}_{t},t)) = \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\boldsymbol{z}_{t},t)$, where $\boldsymbol{\epsilon}_{\boldsymbol{\theta}}^{x}(\boldsymbol{z}_{t},t)$ and $\boldsymbol{\epsilon}_{\boldsymbol{\theta}}^{h}(\boldsymbol{z}_{t},t)$ are the predicted noise of \boldsymbol{x}_{t} and \boldsymbol{h}_{t} respectively. If for any orthogonal transformation $\boldsymbol{R} \in \mathbb{R}^{n \times n}$, $\boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\boldsymbol{z}_{t},t)$ is equivariant to \boldsymbol{R} , i.e., $\boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\boldsymbol{R}\boldsymbol{x}_{t},\boldsymbol{h}_{t},t) = (\boldsymbol{R}\boldsymbol{\epsilon}_{\boldsymbol{\theta}}^{x}(\boldsymbol{x}_{t},\boldsymbol{h}_{t},t), \boldsymbol{\epsilon}_{\boldsymbol{\theta}}^{h}(\boldsymbol{x}_{t},\boldsymbol{h}_{t},t))$, and $p_{T}(\boldsymbol{z}_{T})$ is invariant to \boldsymbol{R} , i.e., $p_{T}(\boldsymbol{R}\boldsymbol{x}_{T},\boldsymbol{h}_{T}) = p_{T}(\boldsymbol{x}_{T},\boldsymbol{h}_{T})$, then $p_{\boldsymbol{\theta}}(\boldsymbol{z}_{0})$ is invariant to any rotational transformation.

Equivariant Energy-guided SDE (EEGSDE)

Bao & Zhao et al., ICLR 2023

• Guide generated molecules towards desired properties c via a time-dependent energy function E(z, c, t):

$$d\boldsymbol{z} = [f(t)\boldsymbol{z} + g(t)^{2}(\frac{1}{\sqrt{\beta_{t|0}}}\boldsymbol{\epsilon_{\theta}}(\boldsymbol{z}, t) \quad \text{translational invariance} \\ + \underbrace{(\nabla_{\boldsymbol{x}} E(\boldsymbol{z}, c, t) - \overline{\nabla_{\boldsymbol{x}} E(\boldsymbol{z}, c, t)}, \nabla_{\boldsymbol{h}} E(\boldsymbol{z}, c, t))}_{\text{energy gradient taken in the product space}}]dt + g(t)d(\tilde{\boldsymbol{w}}_{x}, \tilde{\boldsymbol{w}}_{h}), \ \boldsymbol{z}_{T} \sim p_{T}(\boldsymbol{z}_{T})$$

• Rotation invariance:

Theorem 2. Suppose the assumptions in Theorem [] hold and E(z, c, t) is invariant to any orthogonal transformation \mathbf{R} , i.e., $E(\mathbf{R}x, \mathbf{h}, c, t) = E(x, \mathbf{h}, c, t)$. Then $p_{\theta}(z_0|c)$ is invariant to any rotational transformation.

• The EEGSDE defines a distribution $p(z_0|c)$ conditioned on the property c, which is invariant to translational and rotational transformations

Equivariant Energy-guided SDE

Bao & Zhao et al., Arixv 2022

 $\sqrt{P_{t|0}}$ Equivariant Energy Guidance

Choice of Energy : generating molecules with desired quantum property

Bao & Zhao et al., Arixv 2022

• The energy function is defined as the squared error between the predicted property and the desired property:

the desired property f $E(\boldsymbol{z}_t, c, t) = s|g(\boldsymbol{z}_t, t) - c|^2$

time-dependent property prediction model

• Implementation of property prediction model :

$$g(\boldsymbol{z}_t, t) = \text{Dec}(\text{EGNN}^h(\boldsymbol{x}_t, \boldsymbol{h}'_t)), \quad \boldsymbol{h}'_t = \text{concatenate}(\boldsymbol{h}_t, t)$$

the second component (h feature part) in the output of EGNN invariant to orthogonal transformations Satorras et al.. E (n) equivariant graph neural networks. ICML, 2021.

Choice of Energy : generating molecules with desired quantum property

Bao & Zhao et al., Arixv 2022

• EEGSDE is able to generate more accurate molecules than EDM, e.g., reducing the mean absolute error by more than 30% on the dipole moment property.

Evaluation by test property prediction model

Method	Iethod MAE↓		MAE↓	
$C_v \left(\frac{\mathrm{cal}}{\mathrm{mol}} \right)$	K)	μ (D)		
U-bound	$6.879 {\pm} 0.015$	U-bound	1.613 ± 0.003	
#Atoms	1.971	#Atoms	1.053	
Conditional EDM	$1.065 {\pm} 0.010$	Conditional EDM	$1.123 {\pm} 0.013$	
EEGSDE (s=1)	$1.037 {\pm} 0.010$	EEGSDE (s=0.5)	$0.930 {\pm} 0.005$	
EEGSDE (s=5)	$0.981 {\pm} 0.002$	EEGSDE (s=1)	$0.858 {\pm} 0.006$	
EEGSDE (s=10)	0.941±0.005	EEGSDE (s=2)	0.777±0.007	
L-bound 0.040		L-bound	0.043	
$\Delta \varepsilon$ (me	V)	$\varepsilon_{ m HOMO} \ (m meV)$		
U-bound	1464±4	U-bound	645±41	
#Atoms	866	#Atoms	426	
Conditional EDM 671±5		Conditional EDM	371 ± 2	
EEGSDE (<i>s</i> =0.5) 574±4		EEGSDE (s=0.1)	357±4	
EEGSDE $(s=1)$ 542		EEGSDE (s=0.5)	320 ± 1	
EEGSDE (<i>s</i> =3) 487 ±3		EEGSDE (s=1)	302 ±2	
L-bound	65	L-bound	39	

Evaluation by Gaussian software

Method	MAE↓	Method	MAE↓
μ (D)		$\alpha ({ m Bohr}^3)$	
Conditional EDM	1.20	Conditional EDM	2.41
EEGSDE (<i>s</i> =0.5)	0.96	EEGSDE (<i>s</i> =0.5)	2.27
EEGSDE (s=1)	0.78	EEGSDE (s=1)	2.03
EEGSDE (s=2)	0.73	EEGSDE (s=3)	1.85

Method	MAE↓	Method	MAE↓
$\varepsilon_{ m HOMO}~(m meV)$		$\varepsilon_{ m LUMO}$ (meV)	
Conditional EDM	354	Conditional EDM	573
EEGSDE (<i>s</i> =0.1)	349	EEGSDE (<i>s</i> =0.5)	495
EEGSDE (<i>s</i> =0.5)	341	EEGSDE (s=1)	445
EEGSDE (s=1)	284	EEGSDE (s=3)	416

Choice of Energy : generating molecules with multiple target properties

Bao & Zhao et al., Arixv 2022

• EEGSDE is able to generate molecules targeted to multiple properties by combining the corresponding energy functions linearly:

$$E(\boldsymbol{z}_t, \boldsymbol{c}, t) = \sum_{k=1}^{K} E_k(\boldsymbol{z}_t, c_k, t)$$

• EEGSDE still has a significantly better MAE than the conditional EDM

Method	MAE1↓	MAE2↓		
$C_v \left(\frac{\mathrm{cal}}{\mathrm{mol}} \mathrm{K} \right), \; \mu \left(\mathrm{D} \right)$				
Conditional EDM EEGSDE $(s_1=10, s_2=1)$	1.079±0.007 0.981 ±0.008	1.156±0.011 0.912 ±0.006		
$\Delta \varepsilon$ (meV), μ (D)				
Conditional EDM EEGSDE $(s_1=s_2=1)$	683±1 563 ±3	1.130±0.007 0.866 ±0.003		
α (Bohr ³), μ (D)				
Conditional EDM EEGSDE ($s_1=s_2=1.5$)	2.76±0.01 2.61 ±0.01	1.158±0.002 0.855 ±0.007		

Choice of Energy : generating molecules with target structure

Bao & Zhao et al., Arixv 2022

• The energy function is defined as the squared error between the predicted fingerprint and the molecule fingerprint :

molecular fingerprint

$$E(\boldsymbol{z}_t, c, t) = s \| m(\boldsymbol{z}_t, t) - c \|^2$$

target structure as fingerprint

time-dependent fingerprint prediction model

• Implementation of fingerprint prediction model :

multi-label classifier

$$m(\boldsymbol{z}_t, t) = \sigma(\operatorname{Dec}(\operatorname{EGNN}^h(\boldsymbol{x}_t, \boldsymbol{h}_t'))), \quad \boldsymbol{h}_t' = \operatorname{concatenate}(\boldsymbol{h}_t, t)$$

Choice of Energy : generating molecules with target structure

Bao & Zhao et al., Arixv 2022

• When targeted to specific molecular structures, EEGSDE better capture the structure information in molecules than EDM, e.g, improving the similarity to target structures by more than 10%.:

Target structure	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	et al a	Method	Similarity↑			
			s - 54	all a start	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	QM9	
						cG-SchNet	$0.499 {\pm} 0.002$
EDM				Conditional EDM	$0.671 {\pm} 0.004$		
		1. A. A.	Sugar.	EEGSDE (<i>s</i> =0.1)	$0.696 {\pm} 0.002$		
				EEGSDE (<i>s</i> =0.5)	$0.736 {\pm} 0.002$		
				EEGSDE (s=1.0)	0.750 ±0.003		
				GEOM-Drug			
EEGSDE (ours)	$\mathcal{A}_{\mathcal{A}}^{\mathcal{A}} = \mathcal{A}_{\mathcal{A}}^{\mathcal{A}} = \mathcal{A}_{\mathcal{A}}^{\mathcal{A}} = \mathcal{A}_{\mathcal{A}}^{\mathcal{A}} = \mathcal{A}_{\mathcal{A}}^{\mathcal{A}}$	Conditional EDM	0.165 ± 0.001				
		~2QC	EEGSDE (<i>s</i> =0.5)	$0.185 {\pm} 0.001$			
					EEGSDE (s=1.0)	0.193 ±0.001	

Thank you!