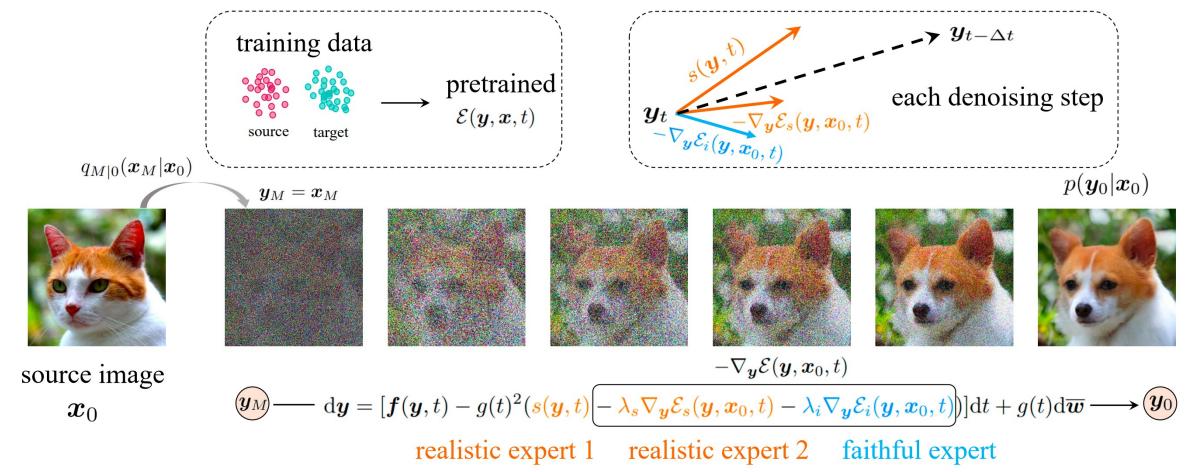

EGSDE: Unpaired Image-to-Image Translation via Energy-Guided Stochastic Differential Equations

https://github.com/ML-GSAI/EGSDE NeurIPS 2022


Tsinghua University, Renmin University of China Min Zhao, Fan Bao, Chongxuan Li, Jun Zhu

Methods

 We propose energy-guided stochastic differential equations (EGSDE) that employs an energy function pretrained across the two domains to guide the inference process of a pretrained SDE for realistic and faithful unpaired I2I.

- Choice of Energy:
- ➤ Recall the goal of I2I:

Be *realistic* for the target domain by changing the domain-specific features
Be *faithful* for the source image by preserving the domain-independent features

 \triangleright Decompose the energy function $\mathcal{E}(y,x,t)$ as the sum of two log potential functions:

$$\begin{split} \mathbb{E}(y,x,t) &= \lambda_{S} \, \mathbb{E}_{S}(y,x,t) + \lambda_{i} \, \mathbb{E}_{i}(y,x,t) \\ &= \lambda_{S} \, \mathbb{E}_{q_{t|0}(x_{t}|x)} S_{S}(y,x_{t},t) - \lambda_{i} \, \mathbb{E}_{q_{t|0}(x_{t}|x)} S_{i}(y,x_{t},t), \end{split}$$

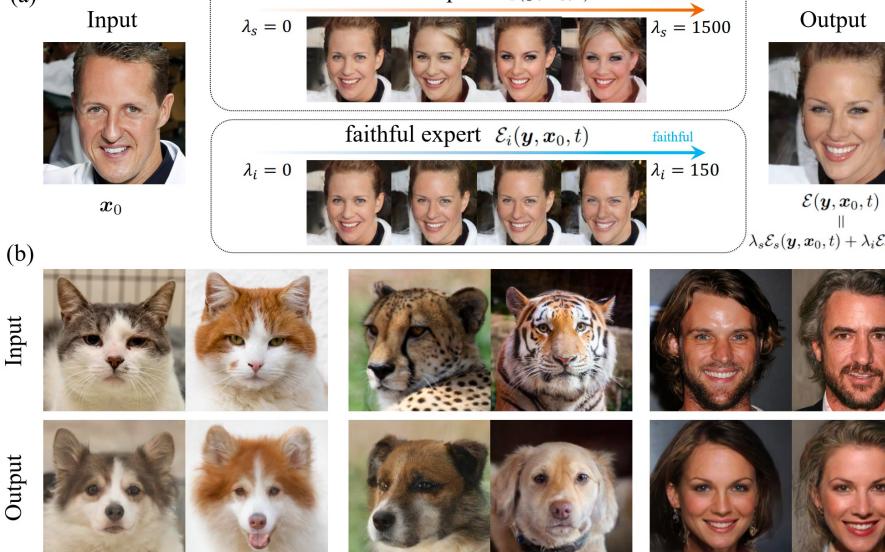
where $q_{t|0}(x_t|x)$ is the perturbation kernel from time 0 to time t in the forward SDE. $S_s(\cdot,\cdot,\cdot)$ and $S_i(\cdot,\cdot,\cdot)$ are two functions measuring the similarity between the sample and perturbed source image.

Suppose $E_s(\cdot,\cdot) \in R^{C \times H \times W}$ is a domain-specific feature extractor, $S_s(\cdot,\cdot,\cdot)$ is defined as the cosine similarity between the features extracted from the generated sample and the source image :

$$S_s(y, x_t, t) = \cos(E_s(y, t), E_s(x_t, t))$$

Suppose $E_i(\cdot,\cdot) \in R^{C \times H \times W}$ is a domain-independent feature extractor, $S_i(\cdot,\cdot,\cdot)$ is defined as the negative squared L2 distance between the features extracted from the generated sample and the source image :

$$S_i(y, x_t, t) = -\|E_i(y, t) - E_i(x_t, t)\|_2^2$$


Reference

- [1] Meng et al. Sdedit: Guided image synthesis and editing with stochastic differential equations
- [2] Song et al. Score-based generative modeling through SDEs.

Experiments

Table 1: Quantitative comparison

Model	$FID \downarrow$	L2 ↓	PSNR ↑	SSIM ↑	AMT
		$Cat \rightarrow Dog$			
CycleGAN* [55]	85.9	-	7-	1-	-
MUNIT* [17]	104.4	-	-	-	-
DRIT* [25]	123.4	-	-	-	-
Distance* [3]	155.3	-	-		-
SelfDistance* [3]	144.4	-	-	1.5	-
GCGAN* [10]	96.6	-	-	-	-
LSeSim* [53]	72.8	-	-	-	-
ITTR (CUT)* [54]	68.6	-	-	1-	-
StarGAN v2 [8]	54.88 ± 1.01	133.65 ± 1.54	10.63 ± 0.10	0.27 ± 0.003	-
CUT* [35]	76.21	59.78	17.48	0.601	79.6%
ILVR [7]	74.37 ± 1.55	56.95 ± 0.14	17.77 ± 0.02	0.363 ± 0.001	75.4%
SDEdit [31]	74.17 ± 1.01	47.88 ± 0.06	19.19 ± 0.01	0.423 ± 0.001	65.2%
EGSDE	65.82 ± 0.77	47.22 ± 0.08	19.31 ± 0.02	0.415 ± 0.001	_
EGSDE [†]	51.04 ± 0.37	62.06 ± 0.10	17.17 ± 0.02	0.361 ± 0.001	-
	,	$Wild \rightarrow Dog$			
CUT [35]	92.94	62.21	17.2	0.592	82.4%
ILVR [7]	75.33 ± 1.22	63.40 ± 0.15	16.85 ± 0.02	0.287 ± 0.001	73.4%
SDEdit [31]	68.51 ± 0.65	55.36 ± 0.05	17.98 ± 0.01	0.343 ± 0.001	57.2%
EGSDE	59.75 ± 0.62	54.34 ± 0.08	18.14 ± 0.01	0.343 ± 0.001	-
EGSDE [†]	50.43 ± 0.52	66.52 ± 0.09	16.40 ± 0.01	0.300 ± 0.001	-
	M	$ale \rightarrow Female$			
CUT [35]	31.94	46.61	19.87	0.74	58.6%
ILVR [7]	46.12 ± 0.33	52.17 ± 0.10	18.59 ± 0.02	0.510 ± 0.001	88.2%
SDEdit [31]	49.43 ± 0.47	43.70 ± 0.03	20.03 ± 0.01	0.572 ± 0.000	74.4%
EGSDE	41.93 ± 0.11	42.04 ± 0.03	20.35 ± 0.01	0.574 ± 0.000	-
	30.61 ± 0.19	53.44 ± 0.09	18.32 ± 0.02	0.510 ± 0.001	_

(a) Ablation studies of energy function. (b) Rrepresentative translation results on three unpaired I2I tasks.

 $Cat \rightarrow Dog$

Wild → Dog

Male → Female