EQUIVARIANT ENERGY-GUIDED SDE FOR INVERSE MOLECULAR DESIGN

https://github.com/gracezhao1997/EEGSDE ICLR 2023

Tsinghua University, Renmin University of China

Fan Bao, Min Zhao, Zhongkai Hao, Peiyao Li, Chongxuan Li, Jun Zhu

Motivation

we propose equivariant energy-guided stochastic differential equations (EEGSDE), a flexible framework for controllable 3D molecule generation under the guidance of an energy function in diffusion models.

Equivariant Energy Guidance

 \triangleright Guide generated molecules towards desired properties c via a time-dependent energy function E(z,c,t):

$$\mathrm{d}\boldsymbol{z} = [f(t)\boldsymbol{z} + g(t)^2(\frac{1}{\sqrt{\beta_{t|0}}}\boldsymbol{\epsilon_{\theta}}(\boldsymbol{z},t) \\ + \underbrace{(\nabla_{\boldsymbol{x}}E(\boldsymbol{z},c,t) - \overline{\nabla_{\boldsymbol{x}}E(\boldsymbol{z},c,t)}, \nabla_{\boldsymbol{h}}E(\boldsymbol{z},c,t))}_{\text{energy gradient taken in the product space}}]\mathrm{d}\boldsymbol{t} + g(t)\mathrm{d}(\tilde{\boldsymbol{w}}_x,\tilde{\boldsymbol{w}}_h), \ \boldsymbol{z}_T \sim p_T(\boldsymbol{z}_T)$$

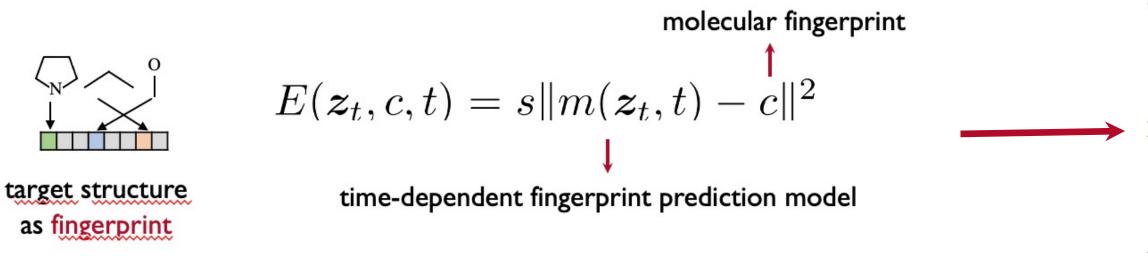
Rotation invariance:

Theorem 2. Suppose the assumptions in Theorem 1 hold and $E(\mathbf{z}, c, t)$ is invariant to any orthogonal transformation \mathbf{R} , i.e., $E(\mathbf{Rx}, \mathbf{h}, c, t) = E(\mathbf{x}, \mathbf{h}, c, t)$. Then $p_{\boldsymbol{\theta}}(\mathbf{z}_0|c)$ is invariant to any rotational transformation.

The EEGSDE defines a distribution $p(z_0|c)$ conditioned on the property c, which is invariant to translational and rotational transformations

Choice of Energy

- Generating molecules with desired quantum property:
- The energy function is defined as the squared error between the predicted property and the desired property:


time-dependent property prediction model
$$t$$
 the desired property
$$\uparrow \qquad \uparrow \qquad \qquad \uparrow \qquad E({m z}_t,c,t)=s|g({m z}_t,t)-c|^2,$$

• Implementation of property prediction model :

$$g(\boldsymbol{z}_t, t) = \text{Dec}(\text{EGNN}^h(\boldsymbol{x}_t, \boldsymbol{h}_t')), \quad \boldsymbol{h}_t' = \text{concatenate}(\boldsymbol{h}_t, t)$$

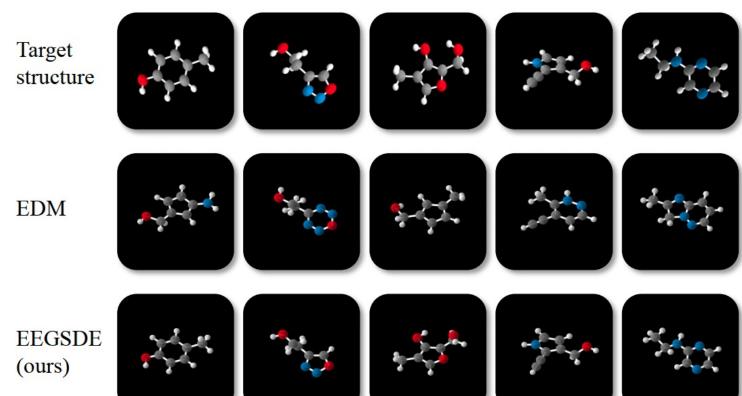
the second component (h feature part) in the output of EGNN invariant to orthogonal transformations

- Generating molecules with target structure :
- The energy function is defined as the squared error between the predicted fingerprint and the molecule fingerprint :

Implementation of fingerprint prediction model :

multi-label classifier

$$m(\boldsymbol{z}_t, t) = \sigma(\text{Dec}(\text{EGNN}^h(\boldsymbol{x}_t, \boldsymbol{h}_t'))), \quad \boldsymbol{h}_t' = \text{concatenate}(\boldsymbol{h}_t, t)$$


- Generating molecules with multiple target properties:
- EEGSDE is able to generate molecules targeted to multiple properties by combining the corresponding energy functions linearly:

$$E(\boldsymbol{z}_t, \boldsymbol{c}, t) = \sum_{k=1}^{K} E_k(\boldsymbol{z}_t, c_k, t)$$

EEGSDE is able to generate more accurate molecules than EDM

Method	MAE↓	Method	$MAE\downarrow$
$C_v \left(\frac{\text{cal}}{\text{mol}} \mathbf{K} \right)$		μ (D)	
U-bound	6.879 ± 0.015	U-bound	1.613 ± 0.003
#Atoms	1.971	#Atoms	1.053
Conditional EDM	1.065 ± 0.010	Conditional EDM	1.123 ± 0.013
EEGSDE $(s=1)$	1.037 ± 0.010	EEGSDE (s =0.5)	0.930 ± 0.005
EEGSDE $(s=5)$	0.981 ± 0.002	EEGSDE $(s=1)$	0.858 ± 0.006
EEGSDE $(s=10)$	0.941 ± 0.005	EEGSDE $(s=2)$	0.777 ±0.007
L-bound	0.040	L-bound	0.043
$\Delta \varepsilon$ (meV)		$\varepsilon_{ m HOMO}$ (meV)	
U-bound	1464±4	U-bound	645±41
#Atoms	866	#Atoms	426
Conditional EDM	671±5	Conditional EDM	371 ± 2
EEGSDE (<i>s</i> =0.5)	574±4	EEGSDE (<i>s</i> =0.1)	357 ± 4
EEGSDE $(s=1)$	542	EEGSDE (<i>s</i> =0.5)	320 ± 1
EEGSDE $(s=3)$	487 ±3	EEGSDE $(s=1)$	302 ± 2
L-bound	65	L-bound	39

EEGSDE better capture the structure information in molecules than EDM

EEGSDE has significantly better MAE on both properties than the conditional EDM

Method	MAE1↓	MAE2↓		
C_v ($\frac{\text{cal}}{\text{mol}}$ K), μ (D)				
Conditional EDM EEGSDE (s_1 =10, s_2 =1)	1.079±0.007 0.981 ±0.008	1.156±0.011 0.912 ±0.006		
$\Delta \varepsilon$ (meV), μ (D)				
Conditional EDM	683±1	1.130 ± 0.007		
EEGSDE $(s_1=s_2=1)$	563 ±3	0.866 ± 0.003		
α (Bohr ³), μ (D)				
Conditional EDM	2.76 ± 0.01	1.158 ± 0.002		
EEGSDE $(s_1=s_2=1.5)$	2.61 ± 0.01	0.855 ± 0.007		